star

搜索

RSS

RSS Link

计数器

140262

队列的头文件

2010年10月05日 04:02 | Comments(1) | Category:C语言 | Tags:

/* 数据结构 队列的实现 Queue.h
 * author : star
 */
 
//防止重复定义
#ifndef QUEUE_H
#define QUEUE_H

#include "defs.h"

//初始化大小为n的队列
int InitSqqueue(SQQUEUE *Q, int n)
{
	Q->data = (ElemType *)malloc((n+1) * sizeof(ElemType));
	if(Q->data == NULL)
		return 0;
	Q->front = Q->rear = 0;
	Q->size  = n + 1;
	return 1;
}

//销毁队列
void DestroySqqueue(SQQUEUE *Q)
{
	free(Q->data);
	Q->data = NULL;
	Q->front = Q->rear = Q->size = 0;
}

//判断队空还是满
int IsSqqueueEmpty(SQQUEUE Q)
{
	return Q.front == Q.rear;
}

int IsSqqueueFull(SQQUEUE Q)
{
	return Q.front == (Q.rear+1) % Q.size;
}

//入队
int EnSqqueue(SQQUEUE *Q, ElemType e)
{
	if(IsSqqueueFull(*Q))
		return 0;
	Q->data[Q->rear] = e;
	Q->rear = (Q->rear+1) % Q->size;\
	return 1;
}

//出队
int DeSqqueue(SQQUEUE *Q, ElemType *e)
{
	if(IsSqqueueFull(*Q))
		return 0;
	*e = Q->data[Q->front];
	Q->front = (Q->front+1) % Q->size;
	return 1;
}

//队列长度
int SqqueueLen(SQQUEUE Q)
{
	return (Q.size + Q.rear + Q.front) % Q.size;
}

//初始化空链式队
void InitLkqueue(LKQUEUE *Q)
{
	Q->front = Q->rear = NULL;
}

//销毁链式队列
void DestroyLkqueue(LKQUEUE *Q)
{
	LQNODEPTR p;
	while(Q->front != NULL)
	{
		p = Q->front;
		Q->front = p->next;
		free(p);
	}
	Q->rear = NULL;
}

//入链队
int EnLkqueue(LKQUEUE *Q, ElemType e)
{
	LQNODEPTR p;
	p = (LQNODEPTR)malloc(sizeof(LQNODE));
	if(p == NULL)
		return 0;
	p->data = e;
	p->next = NULL;
	if(Q->front == NULL)
		Q->front      = Q->rear = p;
	else
		Q->rear->next = Q->rear = p;
	return 1;
}

//出链队
int DeLkqueue(LKQUEUE *Q, ElemType *e)
{
	LQNODEPTR p;
	if(Q->front == NULL)
		return 0;
	p = Q->front;
	Q->front = p->next;
	if(Q->front == NULL)
		Q->rear = NULL;
	*e = p->data;
	free(p);
	return 1;
}

#endif

栈的头文件

2010年10月05日 04:00 | Comments(2) | Category:C语言 | Tags:

/* 数据结构 栈的实现 Stack.h
 * author : star
 */
 
//防止重复定义
#ifndef STACK_H
#define STACK_H

#include "defs.h"

//初始化大小为n的栈 
int InitSqstack(SQSTACK *S, int n)
{
	S->data = (ElemType *)malloc(n * sizeof(ElemType));
	if(S->data == NULL)
		return 0;
	S->size = n;
	S->top  = -1;
	return 1;
}

//销毁栈
void DestroySqstack(SQSTACK *S)
{
	free(S->data);
	S->data = NULL;
	S->top  = -1;
	S->size = 0;
}

//判断栈空、栈满
int IsSqstackEmpty(SQSTACK S)
{
	return S.top == -1;
}

int IsSqstackFull(SQSTACK S)
{
	return S.top == S.size-1;
}

//入栈
int PushS(SQSTACK *S, ElemType e)
{
	if(IsSqstackFull(*S))
		return 0;
	++S->top;
	S->data[S->top] = e;
	return 1;
}

//出栈
int PopS(SQSTACK *S, ElemType *e)
{
	if(IsSqstackEmpty(*S))
		return 0;
	*e = S->data[S->top];
	--S->top;
	return 1;
}

//初始化链式栈
int InitLinkstack(LINKSTACK *S)
{
	*S = (LINKSTACK)malloc(sizeof(LSNODE));
	if(*S == NULL)
		return 0;
	(*S)->next = NULL;
	return 1;
}

//销毁链式栈
int DestroyLinkstack(LINKSTACK *S)
{
	LSNODEPTR q, p;
	p = *S;
	while(p)
	{
		q = p;
		p = p->next;
		free(q);
	}
	*S = NULL;
}

//判断链栈空、满
IsLinkstackEmpty(LINKSTACK S)
{
	return S->next == NULL;
}

IsLinkstackFull(LINKSTACK S)
{
	return S->next != NULL;
}

//入链栈 
int PushL(LINKSTACK S, ElemType e)
{
	LSNODEPTR p;
	p = (LSNODEPTR)malloc(sizeof(LSNODE));
	if(p == NULL)
		return 0;
	p->data = e;
	p->next = S->next;
	S->next = p;
	return 1;
}

//出链栈
int PopL(LINKSTACK S, ElemType *e)
{
	LSNODEPTR p;
	p = S->next;
	if(p == NULL)
		return 0;
	S->next = p->next;
	*e = p->data;
	free(p);
	return 1;
}

#endif

数据结构头文件Ver2.0

2010年10月05日 03:57 | Comments(1) | Category:C语言 | Tags:

/* 数据结构 全部结构定义文件 defs.h
 * author : star
 */

//引入所有需要的头文件 
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

//防止重复定义
#ifndef DEF_H
#define DEF_H

//定义执行状态返回结果
 
#define TRUE 		 1  //成功 
#define FALSE 		 0  //失败 

#ifndef FORMATSTR
#define FORMATSTR "%d " //输出格式 

typedef int ElemType;	//基本数据类型 
#endif

//线性表 
typedef struct
{
	ElemType *data;		//数据 
	int		 size;	    //容量 
	int 	 len;	    //长度 
}SQLIST;

//单链表
typedef struct link_node
{
	ElemType          data;		//数据
	struct link_node *next;		//结点 
}NODE, *NODEPTR, *LINKLIST;

//双向链表 
typedef struct dlink_node
{
	ElemType 		   data;			//数据 
	struct dlink_node *next, *prior;	//前后结点 
}DBNODE, *DBNODEPTR, *DBLINKLIST;

//循环单向链表 原理同单链表 
//循环双向链表 原理同双向链表

//静态链表
#define SLEN 512	//静态链表长度 
typedef struct slink_node
{
	ElemType data;	//数据 
	int      next;	//指针 
}SNODE, *SLINKLIST;

/*静态链表是给没有指针的语言写的,C语言有指针,*
 *而且静态链表不实用,定义多而杂,因此不写了   */
 
//广义表
enum{ATOM,LIST};
typedef struct glist_node
{
	int tag;			//ATOM或LIST 
	union
	{
		ElemType           data;	//ATOM 
		struct glist_node *head; 	//LIST 
	}item;
	struct glist_node *next;		//结点 
}GLNODE, *GLIST;

//顺序栈
typedef struct
{
	ElemType *data;		//数据 
	int 	  top;		//栈顶 
	int 	  size;		//容量 
}SQSTACK;

//链式栈
typedef struct stack_node
{
	ElemType 		   data;	//数据 
	struct stack_node *next;	//结点 
}LSNODE, *LSNODEPTR, *LINKSTACK;

//顺序循环队列
typedef struct
{
	ElemType  *data;	//数据 
	int front, rear;	//队首与队尾 
	int size;			//容量 
}SQQUEUE;

//链式队列
typedef struct queue_node	//结点 
{
	ElemType data;
	struct queue_node *next;
}LQNODE, *LQNODEPTR;

typedef struct
{
	LQNODEPTR front, rear;	//队首与队尾 
}LKQUEUE;

#endif

表的3个例子

2010年10月03日 21:00 | Comments(5) | Category:C语言 | Tags:

1.线性表的例子

#include "List.h"

int data[5] = {2, 3, 6, 7, 11};

int main(void)
{
	//线性表的简单示例 
	int i, j, k;
	SQLIST L;
	k = InitSqlist(&L, 10);	//初始化线性表 
	if(k == 0)
	{
		puts("ERROR");
		exit(-1);
	}
	for(i = 0; i < 5; ++i) 
		AppendSqlistElem(&L, data[i]);	//把data数据放入线性表 
	TraverseSqlist(L);					//遍历线性表 
	
	putchar(10);
	
	j = SearchSqlist(L, 6);				//查找数据6 
	DeleteSqlistElemAt(&L, j);			//删除 
	InsertSqlistElemAt(&L, 5, j);		//插入5
	
	TraverseSqlist(L);					
		
	DestroySqlist(&L);					//销毁线性表 
			
	return 0;
}

2.单链表的例子

#include "List.h"

int data[5] = {2, 3, 6, 7, 11};

int main(void)
{
	//链表示例	
	int i, j, k;
	LINKLIST L = NULL;
	NODEPTR S, SPRE;

	k = InitLinklist(&L);	//初始化链表 
	if(k == 0)
	{
		puts("ERROR");
		exit(-1);
	}
	for(i = 0; i < 5; ++i) 
		AddLinklistElem(L, data[4-i]);	//添加数据 
	TraverseLinklist(L);				//遍历
	
	putchar(10);
	
	DeleteLinklistElem(L, 6);			//删除元素6 
	InsertLinklistElemAt(L, 5, 3);		//插入元素5 
	TraverseLinklist(L);				
			
	DestroyLinklist(&L);				//释放表 
	
	return 0;
}

3.双向链表的例子

#include "List.h"

int data[5] = {2, 3, 6, 7, 11};

int main(void)
{
	//双向链表的简单示例 
	int i, j, k;
	DBLINKLIST L;
	DBNODEPTR t;
	k = InitDBLinklist(&L);	//初始化双向链表
	if(k == 0)
	{
		puts("ERROR");
		exit(-1);
	}
	
	for(i = 0, t = L; i < 5; ++i,t = t->next) 
		InsertDBLinklistElemAfter(t, data[i]);	//把data数据放入双向链表

	TraverseDBLinklist(L);					//遍历双向链表

	putchar(10);
	
	t = SearchDBLinklist(L, 6);			//找到6 
	DeleteDBLinklistElem(t);			//删除6 
	t = SearchDBLinklist(L, 3);			//找到3 
	InsertDBLinklistElemAfter(t, 5);	//插入5 
	TraverseDBLinklist(L);				
	
	DestroyDBLinklist(&L);					//销毁双向链表			
	return 0;
}

表的头文件

2010年10月03日 20:54 | Comments(1) | Category:C语言 | Tags:

/* 数据结构 表的实现 List.h
 * author : star
 */

//防止重复定义
#ifndef LIST_H
#define LIST_H

#include "defs.h"

//初始化容量为n的线性表  
//时间复杂度O(1) 
int InitSqlist(SQLIST *L, int n)
{
	L->data = (ElemType *)malloc(n * sizeof(ElemType));
	if(L->data == NULL)
		return 0;
	L->size = n;
	L->len  = 0;
	return 1;
}

//销毁线性表
//时间复杂度O(1) 
void DestroySqlist(SQLIST *L)
{
	free(L->data);
	L->data = NULL;
	L->size = 0;
	L->len  = 0;
}

//判断线性表的空与满
//时间复杂度O(1)
int IsSqlistFull(SQLIST L)
{
	return L.len == L.size;
}
int IsSqlistEmpty(SQLIST L)
{
	return L.len == 0;
}

//获取第i个数据
//时间复杂度O(1)
//if(i >= 0 || i <= L->len) return L->data[i-1];

//追加数据
//时间复杂度O(1)
int AppendSqlistElem(SQLIST *L, ElemType e)
{
	if(IsSqlistFull(*L))
		return 0; 
	L->data[L->len] = e;
	++L->len;
	return 1;
}

//在i(i>=0)处插入数据
//时间复杂度O(n)
int InsertSqlistElemAt(SQLIST *L, ElemType e, int i)
{
	int k;
	if(i > L->len || IsSqlistFull(*L))
		return 0;
	for(k = L->len - 1; k >= i; --k)
		L->data[k+1] = L->data[k];
	L->data[i] = e;
	++L->len;
	return 1;
}

//删除表中i(i>=0)处的数据
//时间复杂度O(n)
int DeleteSqlistElemAt(SQLIST *L, int i)
{
	int k;
	if(i >= L->len || IsSqlistEmpty(*L))
		return 0;
	for(k = i+1; k < L->len; ++k)
		L->data[k-1] = L->data[k];
	--L->len;
	return 1;
}

//遍历线性表
//时间复杂度O(n)
void TraverseSqlist(SQLIST L)
{
	int i;
	for(i = 0; i < L.len; ++i)
		printf(FORMATSTR, L.data[i]);
}

//查找数据 
//时间复杂度O(n)
int SearchSqlist(SQLIST L, ElemType key)
{
	int i;
	for(i = 0; i < L.len; ++i)
		if(L.data[i] == key)
			return i;
	return -1;
}

//初始化链表  
//时间复杂度O(1)
int InitLinklist(LINKLIST *L)
{
	*L = (LINKLIST)malloc(sizeof(NODE));
	if(*L == NULL)
		return 0;
	(*L)->next = NULL;
	return 1;
}

//销毁链表
//时间复杂度O(n) 
void DestroyLinklist(LINKLIST *L)
{
	NODEPTR p, q;
	p = *L;
	while(p)
	{
		q = p;
		p = p->next;
		free(q);
	}
	*L = NULL;
}

//获取第i(i>=1)个元素 
//时间复杂度O(n)
NODEPTR GetLinklistElem(LINKLIST L, int i, NODEPTR *pre)
{
	NODEPTR p;
	int 	k;
	p = L; k = 0;
	while(k < i && p != NULL)
	{
		*pre = p;
		p = p->next;
		++k;
	}
	if(k < i) 
		*pre = NULL;
	return p;
}

//添加数据
//时间复杂度O(1)
int AddLinklistElem(LINKLIST L, ElemType e)
{
	NODEPTR p;
	p = (NODEPTR)malloc(sizeof(NODE));
	if(p == NULL)
		return 0;
	p->data = e;
	p->next = L->next;
	L->next = p;
	return 1;
}

//在i(i>=1)处插入数据
//时间复杂度O(n)
int InsertLinklistElemAt(LINKLIST L, ElemType e, int i)
{
	NODEPTR p, q, pre;
	q = (NODEPTR)malloc(sizeof(NODE));
	if(q == NULL)
		return 0;	
	q->data = e;
	p = GetLinklistElem(L, i, &pre);
	if(pre == NULL)
		return 0;
	q->next   = p;
	pre->next = q;
	return 1;
}

//删除表中i(i>=1)处的数据
//时间复杂度O(n)
int DeleteLinklistElemAt(LINKLIST L, int i)
{
	NODEPTR p, pre;
	p = GetLinklistElem(L, i, &pre);
	if(p == NULL)
		return 0;
	pre->next = p->next;
	free(p);
	return 1;
}

//遍历线性表
//时间复杂度O(n)
void TraverseLinklist(LINKLIST L)
{
	NODEPTR p;
	p = L->next;
	while(p)
	{
		printf(FORMATSTR, p->data);
		p = p->next;
	}
}

//查找数据 
//时间复杂度O(n)
NODEPTR SearchLinklist(LINKLIST L, ElemType e, NODEPTR *pre)
{
	NODEPTR p;
	*pre = L;
	p = L->next;
	while(p != NULL && p->data != e)
	{
		*pre = p;
		p = p->next;
	}
	if(p == NULL)
		*pre = NULL;
	return p;
}

//删除表中的数据
//时间复杂度O(n)
int DeleteLinklistElem(LINKLIST L, ElemType e)
{
	NODEPTR p, pre;
	p = SearchLinklist(L, e, &pre);
	if(p == NULL)
		return 0;
	pre->next = p->next;
	free(p);
	return 1;
}

//初始化链表  
//时间复杂度O(1)
int InitDBLinklist(DBLINKLIST *L)
{
	*L = (DBLINKLIST)malloc(sizeof(DBNODE));
	if(*L == NULL)
		return 0;
	(*L)->next = (*L)->prior = NULL;
	return 1;
}

//销毁双向链表
//时间复杂度O(n) 
void DestroyDBLinklist(DBLINKLIST *L)
{
	DBNODEPTR p, q;
	p = *L;
	while(p)
	{
		q = p;
		p = p->next;
		free(q);
	}
	*L = NULL;
}

//在双向链表结点后插入元素
//时间复杂度O(1) 
int InsertDBLinklistElemAfter(DBNODEPTR p, ElemType e)
{
	DBNODEPTR q;
	q = (DBNODEPTR)malloc(sizeof(DBNODE));
	if(q == NULL)
		return 0;
	q->data  = e;
	q->next  = p->next;
	q->prior = p;
	if(p->next != NULL)
		p->next->prior = q;
	p->next = q;
	return 1;
}

//遍历双向链表
//时间复杂度O(n)
void TraverseDBLinklist(DBLINKLIST L)
{
	DBNODEPTR p;
	p = L->next;
	while(p)
	{
		printf(FORMATSTR, p->data);
		p = p->next;
	}
}
//删除双向链表中的某个结点
//时间复杂度O(1) 
void DeleteDBLinklistElem(DBNODEPTR p)
{
	DBNODEPTR pre;
	pre = p->prior;
	if(pre != NULL)
		pre->next = p->next;
	if(p->next != NULL)
		p->next->prior = pre;
	free(p);
}

//查找双向链表的数据 
//时间复杂度O(n)
DBNODEPTR SearchDBLinklist(DBLINKLIST L, ElemType e)
{
	DBNODEPTR p;
	p = L->next;
	while(p != NULL && p->data != e)
		p = p->next;
	return p;
}

#endif