star

搜索

RSS

RSS Link

计数器

141452

求平面最近点对

2010年8月04日 03:33 | Comments(44) | Category:C语言 | Tags:

对于平面上N个点,求其中两个距离最近的点。输入格式:点的个数N,然后是N个坐标即可计算出。

#include <stdio.h>
#include <math.h>
#include <assert.h>
#include <stdlib.h>

struct pos {double x, y;};
typedef struct pos Pos;
Pos p[100000];
int d[100000];
double eps = 0.00001;

int cmp_x(const void *p, const void *q)
{
	double tmp=((Pos*)p)->x-((Pos*)q)->x;
	if(tmp>0) return 1;
	else if(fabs(tmp)<eps) return 0;
	else return -1;
}

double Dest(Pos p2, Pos p1)
{
    return ((p2.y-p1.y)*(p2.y-p1.y)+(p2.x-p1.x)*(p2.x-p1.x));
}

double Min(double a, double b)
{
    return a < b ? a : b;
}

int cmp(const void *a, const void *b)
{
     return(*(int *)a-*(int *)b);
}

double NSP(int left, int right)
{
    double m1, m2, m3 , res;
    int i, j, ix, mid;
    if(right - left == 1)
        return Dest(p[right], p[left]);
    else if(right - left == 2)
    {
        m1 = Dest(p[left], p[left+1]);
        m2 = Dest(p[left], p[left+2]);
        m3 = Dest(p[left+1], p[left+2]);
        return Min(m1, Min(m2, m3));
    }
    mid = (left+right)/2;
    res = Min(NSP(left, mid), NSP(mid+1, right));
    
    ix = 0;
    for(i = mid; i>=left && p[mid].x-p[i].x < res; --i)
        d[ix++] = i;
    for(i = mid+1; i<=right && p[i].x-p[mid+1].x < res; ++i)
        d[ix++] = i;
    qsort(d, ix, sizeof(d[0]), cmp);
    for(i = 0; i < ix; ++i)
        for(j = i+1; j<ix && j<i+4 && p[d[j]].y-p[d[i]].y < res; ++j)
            res = Min(res, Dest(p[d[j]], p[d[i]])); 
    return res;
}

int main(void)
{
    int N, i;
    while(scanf("%d", &N), N)
    {
    	assert(N!=1 && N<100000);
        for(i = 0; i < N; ++i)
            scanf("%lf %lf", &p[i].x, &p[i].y);
            
        qsort(p, N, sizeof(p[0]), cmp_x);
        printf("%.2lf\n", sqrt(NSP(0, N-1)));
    }
    return 0;
}

用的是分治法。

求一个数的二进制有多少个1?

2010年8月03日 02:29 | Comments(1) | Category:C语言 | Tags:

/*author:Star date:2010-08-02*/
#include <stdio.h>
#include <assert.h>

int CntBit(unsigned int n)	//分治思想
{
	n = ((n & 0xaaaaaaaa) >> 1 ) + (n & 0x55555555);
	n = ((n & 0xcccccccc) >> 2 ) + (n & 0x33333333);
	n = ((n & 0xf0f0f0f0) >> 4 ) + (n & 0x0f0f0f0f);
	n = ((n & 0xff00ff00) >> 8 ) + (n & 0x00ff00ff);
	n = ((n & 0xffff0000) >> 16) + (n & 0x0000ffff);
	return n;
}

int main(int argc, char *argv[])
{
	unsigned int N;
	int i, j;
	scanf("%u", &N);
	printf("%u:", N);
	i = CntBit(N);
	assert(i >= 0 && i <= 32);
	for(j = 31; j >= 0; --j)
		printf("%d", N&(1<<j) ? 1 : 0);	
	printf("\nhave %d bit that are \'1\'", i);
	return 0;
}

这里数以$$2^{32}-1$$的大小范围为例。

对于给定的N,求N!结果的位数

2010年8月01日 05:02 | Comments(606) | Category:C语言 | Tags:

根据斯特林公式:$$n!$$~$$\sqrt{2\pi n}(\frac{n}{e})^n$$

/*calculate the number of digits in the factorial of the integer N.date:2010-07-31*/
#include <stdio.h>
#include <math.h>
#include <assert.h>
int main(void)
{
	const double PI = acos(-1.0);
	int T;
	while(1)
	{
		scanf("%d", &T);
		assert(T > 0 && T < (1<<30));
		printf("%d\n", (int)((T*log(T) - T + 0.5 * log(2*T*PI) ) / log(10)) + 1);
	}
	return 0;
}